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Abstract To ensure correctly operating control systems, the measurement and control equipment in
WWTPs must be mutually consistent. The dynamic simulation of activated sludge systems could offer a
suitable tool for designing and optimising control strategies. Ideal or simplified sensor models represent a
limiting factor for comparability with field applications. More realistic sensor models are therefore required.
Two groups of sensor models are proposed on the basis of field and laboratory tests: one for specific
sensors and another for a classification of sensor types to be used with the COST simulation benchmark
environment. This should lead to a more realistic test environment and allow control engineers to define the
requirements of the measuring equipment as a function of the selected control strategy.
Keywords ASM; control of WWTPs; COST benchmark; sensor behaviour; sensor classes; sensor models

Introduction
In recent years, the importance of on-line measurements on WWTPs has increased notice-
ably and more reliable sensors have become available. Their main applications are in
process control and for the continuous monitoring of effluent quality (Jeppsson et al.,
2002). Although these two applications have completely different requirements with
regard to sensor behaviour, the same instruments are often used in both cases. High accura-
cy is needed for monitoring quality standards, although low demands are made on the time
scale, whereas control applications mainly require a high measuring frequency and a short
response time. Recently developed nutrient sensors offer new perspectives for process con-
trol, but their limitations should be kept in mind. The time resolution may be essential for
the control result, for example the inlet load variation must be measured quickly in feed-
forward control to minimize the impact on the controlled processes. Finally, measurement
noise may disturb the control behaviour.

The dynamic simulation of activated sludge systems (i.e. with the ASM family, Henze et
al., 2000) is a proven tool for testing and optimising control strategies. The ideal (no delay or
noise) or simplified (only delay) sensor models which are commonly used represent a limiting
factor as regards comparability to field applications. Two groups of sensor models will be
proposed in the following treatment: the first group describes specific sensors whose main
characteristics have been determined. It is envisaged that this group be applied to optimise
existing control systems consisting of measurement and control equipment. The second
group of sensor models is designed with respect to the COST benchmark simulation frame-
work (Alex et al., 1999; Copp, 2002). This framework was set up to test various control strate-
gies in a standardised environment. Six classes of sensors are defined in order to specify the
requirements of the control strategies on the measuring system. In a second paper (Alex et al.,
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2003), the sensor models will be applied to simple and sophisticated aeration-control strate-
gies in order to demonstrate the impact of sensor behaviour on the control result.

Sensor field tests
A number of ammonium analysers were tested in the laboratory as well as in field applica-
tions. The laboratory tests included measurements of calibration standards and recovery
experiments on the wastewater matrix. The field tests comprised the laboratory analysis of
grab samples and determination of the response time of the measuring systems. The
measurement results were processed in a database which is part of a software environment
dealing with a monitoring concept for on-line analysers (Thomann et al., 2002). Control
applications require the response time not only of the analyser but also of the entire measur-
ing system including sample preparation where this exists. The study covered various
methods for detecting the response time of the entire measuring system depending on the
type of analyser (Table 1).

In general, the response (or T90) time (Figure 2 according to ISO/CD, 2000) of the
sensors can be easily determined by switching between buckets containing test solutions of
different concentrations. This test becomes more complicated for analysers requiring
sample preparation, depending on the type of filtration unit. Analysers with a submerged
filtration unit could be tested like in-line sensors subject to the required sample flow. A
different method has to be used for external filtration units requiring a high sample flow
rate. The inlet and return sludge flows of two lanes of a WWTP were stopped and digester
supernatant was dosed into one lane in order to obtain two tanks with significantly different
ammonium concentrations. The response time was determined by changing the sample
supply pump from one lane to the other (Figure 1). Grab samples were taken over the test
period to monitor the biodegradation.

Table 2 shows the results of the response time tests described as the T90 time (Figure 2).
The buoy-type analyser could not be tested due to sensor failures. It should be borne in mind
that all tested filtration units use new membrane technology, which affects the response
time. Older units often have response times greater than 30 minutes. On this topic, it should
also be noted that external sample preparation systems require a high pump capacity and
subsequently a high pump energy. This contradicts the goal of minimising the overall energy
consumption by using optimised control systems based on on-line measurements.

Sensor models
The following description of two kinds of sensor models is the result of a SIMULINK
implementation and to some extent takes into account simulation performance issues
which are similar for most simulation systems.
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Table 1 List of analysers and filtration units investigated in the tests

No Analyser Filtration unit Distance filt. – anal. On/in-line

1 Buoy type miniaturised photometric – 0 m In-line 
analyser

2 Photometric standard analyser Continuous submerged 23 m On-line
membrane-type probe 
preparation

3 Photometric standard analyser Discontinuous submerged 23 m On-line
membrane-type probe 
preparation

4 Flow-through cell type analyser – 0 m On-line
with ion-sensitive electrodes

5 Gas-sensitive standard analyser External membrane-type 
probe preparation 24 m On-line
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Assumptions

First, some assumptions have to be made to ensure general applicability of the models and
to keep them as simple as possible: the sensor response is linear over the entire measuring
range; no systematic error is considered, since this would depend mainly on the mainte-
nance and changing interference; and finally no attenuation is taken into account. If an
attenuation is needed it can be defined within the tested controller.

Real measurement signals always include measurement noise, which can lead to
unwanted control actions. A simplified noise description is included in the sensor models.
The idea is not to model the noise exactly – this would make the model undesirably com-
plex – but to take into account some of its effects. In order to obtain comparable simulation
results for the COST benchmark or to have a basic definition of noise for the specific sensor
model, a standard noise signal is defined in an ASCII file. If a random signal had been
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Figure 1 Response time of a standard analyser with external membrane-type probe preparation
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Table 2 Response time of the determined sensors

No Analyser Analyser only Analyser + filtration unit

T90 [min] T90 [min]

1 Buoy-type miniaturised photometric analyser – 9 *
2 Photometric standard analyser with filtration unit 5 15
3 Photometric standard analyser with filtration unit 6 31 **
4 Flow-through cell type analyser with ion-sensitive electrodes – < 5 sec.
5 Gas-sensitive standard analyser with filtration unit 3 30 ***

* Manufacturer specification, ** with discontinuous filtration, *** pump with only low flow rate (1 m3/h)
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selected, it would have been necessary to run each simulation a large number of times in
order to eliminate its influence. The noise signal has a normal distribution (standard
deviation 1) and is frequency-limited. Use of a sample time of 1 minute together with linear
interpolation will limit the frequency spectrum of the noise (cut-off of high frequencies –
pink noise). The standard noise is then multiplied by the defined noise level (2.5% of
the max. measuring range boundary for the benchmark models and user-defined for the
specific sensor models). This simplification may run into problems, for instance if an auto-
correlation has a significant impact on the control result. If measurements of the specific
noise are available, these should be modelled instead.

Sensor model for specific sensors

This sensor model describes sensors whose response time, measurement range (with the
detection limit as the lower measurement range boundary), trueness and precision is
known. The trueness is implemented optionally to test the robustness of the controller
against measurement failures. The precision is calculated from a standard noise defined as
the standard deviation at 20 and 80% of the measuring range. Moreover, a continuous drift
effect which could be an important source of unwanted control actions is modelled. An
autocalibration/autocleaning system and the measuring interval are also taken into account.

In the SIMULINK implementation (Figure 3) the raw sensor signal is transformed by a
linear transfer function (block “Transfer Fcn for response time”) which is used to
implement the step response of the sensor. The real-time behaviour of sensors is typically a
combination of the delay time caused by sample transport and a dynamic part (rise/fall
time) caused by a factor such as the hydraulic retention time of the analyser’s measuring
chamber. The draft version of a future ISO standard (ISO/CD, 2000) describing the per-
formance of on-line sensors characterises the sensor dynamics based on a step response as
presented in Figure 2. The (transport) delay time is defined as the time required to reach
10% of the final value of a step response (T10). In this context, therefore, the delay time is
not exactly the same as the transport delay time or dead time defined in control engineering.
The overall time required to reach (and not to leave) a band between 90–110% of the final
value of the step response is introduced as a response time (here T90). For the sensor
models, the desired dynamic time behaviour of the response time is modelled using a series
of Laplace transfer functions. The number of first-order transfer functions in series (n)
determines the ratio of delay time (T10) to response time (T90) (Figure 2):

Noise is considered by introducing the “standard” noise signal, which is multiplied by
the measuring range (ymax–ymin). The resulting signal is multiplied by a linear function
defined by the noise offset a and the slope b. This function is calculated depending on the
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defined noise levels at 20 and 80% (as a relative standard deviation) of the measuring range.
The overall resulting noise signal is added to the output signal of the transfer function
block.

A calibration and cleaning routine is modelled as a SIMULINK block containing a pulse
generator (outputs 0 and 1). If the pulse falls from one to zero, the integrated drift error is
reset to zero. During the calibration and cleaning routine, the last value is held using a
switch block and another integrator as a memory function. A zero-order hold block is used
to model the measuring interval of discontinuous sensors. This block must be deleted for
continuous sensors. Figure 5 shows the original and sensor-model signals with the para-
meters from Figure 4.

It can be seen (Figure 5) that the noise varies depending on the actual measuring value
due to the specification of the relative standard deviation at 20% (0.025) and 80% (0.2) of
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Figure 4 Parameter list of sensor model
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Figure 5 Raw signal (pulse generator) and output signal of the specific sensor model
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the measuring range. The continuous drift, the hold time during the calibration routine and
the subsequent reset are clearly visible at the lower range. At the higher measuring range,
the noise covers the drift effect.

Figure 6 shows the measured response time of the fifth system (gas-sensitive standard
analyser with filtration unit) to a concentration step change and the results from the sensor
model using a T90 time of 30 minutes and a relative standard deviation at 20 and 80% of the
measuring range of 0.5%. No drift or calibration time were taken into account.

Sensor models for the COST simulation benchmark

The aim of the classification is to describe different sensor types but also to limit the num-
ber of sensor classes in order to facilitate the comparison of the simulation results. The
COST benchmark (Alex et al., 1999; Copp, 2002) is concerned with testing control strate-
gies, so only a few related criteria are used. Thus drift effects are not considered because
they would be too sensor-specific. Nevertheless, this procedure could easily be implement-
ed for test reasons. There is no point in defining a user-configurable class, as this would
make it difficult to compare different benchmark studies. It is assumed that even future sen-
sors can be classified within the proposed scheme. Should it nevertheless be impossible to
choose a class, the benchmark model user would be requested to describe the specific sen-
sor in detail. The six sensor classes are shown in Table 3 and a list of typical sensors in
Table 4.

The response time includes the whole system with the filtration unit and measuring
system. Class A describes – from a control point of view – almost ideal sensors: the
response time of 1 minute is chosen in order to prevent insufficiently realistic control appli-
cations. Class B mainly contains classical analysers with fast filtration and short measuring
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Table 3 Suggested sensor classes

Sensor classes Response time Measuring interval Examples

[min] [min]

Class A 1 0 Ion sensitive, optical without filtration
Class B0 10 0 Gas sensitive + fast filtration
Class B1 10 5 Photometric + fast filtration
Class C0 20 0 Gas-sensitive + slow filtration
Class C1 20 5 Photometric + slow filtration or sedimentation
Class D 30 30 Photometric or titrimetric for total components

Figure 6 Measured and modelled response time of step change
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intervals. Class C describes analysers with a slow filtration or sedimentation unit. Class D
includes all batch measurements including the respirometer and sensors for total compo-
nents. To take into account continuously and discontinuously measuring sensors, classes B
and C are subdivided into two subclasses. The measuring interval is defined as five min-
utes, this being a typical minimum value for photometric analysers. Longer intervals are
not useful for control actions and are therefore neglected. In addition to choosing the sensor
class, the user must define the measuring range for each sensor. Depending on the chosen
measuring range, the standard deviation is calculated as approximately 2.5% of the maxi-
mum measuring-range boundary (see sensor model description).

The proposed sensor classes contain a set of continuous (A, B0, C0) and time-discrete
sensor models (B1, C1, D). Continuous models are preferred to time-discrete ones for
implementing the continuous sensors for performance reasons. The discontinuous sensors
B1 and C1 are modelled in a similar way but include an output sample and hold function.
Sensor class D is modelled only in discrete form.

Continuously measuring sensors. The following approach is suggested for classes A, B0
and C0. Table 5 shows the parameters for the response-time modelling (see specific sensor
model) of the continuously operating sensors.

The transport delay for class A is only a small fraction of the response time typical for
this sensor class. A system order of n = 8 is assumed for sensor classes B and C, which leads
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Table 4 Typical sensor characteristics within the proposed classification scheme

Measured variable Sensor types Response time (min) Measuring interval (min)

MLSS (g/l) A 1 0
Turbidity (FNU or mg TSS/l)
SNH4 (ion-sensitive)
SNOx (ion-sensitive)
SNOx (UV)
CCOD, SCOD (UV/Vis)
Flow rate (m3/d)
Water level (m)
Temperature (°C)
pH
SO (mg O2/l)
Sludge blanket height (m)

SNH4 (gas-sensitive + fast filtration) B0 10 0
SNOx (UV + fast filtration)

SNH4 (photometric + fast filtration B1 10 5
SNO3 (photometric + fast filtration)
SNO2 (photometric + fast filtration)
SPO4 (photometric + fast filtration)

SNH4 (gas-sensitive + slow filtration) C0 20 0
SNOx (UV + slow filtration)

SNH4 (photometric + slow filtration or sedimentation) C1 20 5
SNO3 (photometric + slow filtration or sedimentation)
SNO2 (photometric + slow filtration or sedimentation)
SPO4 (photometric + slow filtration or sedimentation)

CCOD (thermal chemical oxidation + photometric) D 30 30
TOC (thermal oxidation + IR detector)
CN (thermal oxid. + IR detector or chemoluminescence detector)
CP (thermal chemical oxidation + photometric)
Respirometer
Titration biosensor (alkalinity)
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to a delay time of approximately 40% of the response time. This is assumed to include the
significant effect of the sample transport. The step responses for classes A, B0 and C0 are
presented in Figure 8. The noise is modelled in a similar way to the specific sensor model,
but only with a constant noise level nl. In the SIMULINK model presented in Figure 9, the
noise signal is multiplied by the noise level nl and the maximum value of the measurement
interval ymax. The noise is added to the delayed measurement signal and limited to the
measurement interval (ymin, ymax). The noise level is defined as nl = 0.025 for all bench-
mark sensor classes (approximately 2.5% of the maximum boundary of the measuring
range).

Discontinuously measuring sensors. Sensor classes B1, C1 and D are operated discontinu-
ously using a sample time T0. An example of an implementation using a SIMULINK
model is presented in Figure 9. The implementation is similar to that used in the model for
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Table 5 Parameter for response time modelling

Sensor class T90 n T R = T10/T90

A 1 min 2 0.257 0.133
B0 10 min 8 0.849 0.392
C0 20 min 8 1.699 0.392
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Figure 9 Simulink implementation class B1, C1
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the continuously measuring sensors but includes an additional output sample and hold
function.

Sensor class D represents batch-type reactors, for which any of the continuous delay
times are negligible compared to the batch operation of the measurement. An appropriate
SIMULINK implementation is demonstrated in Figure 10. This model adds noise to the
original signal, limits the sum to the measuring range (ymax – ymin) and uses a sample and
hold function followed by a unit delay (y(k)=u3(k–1)). Figure 11 shows examples of the
output signal for all sensor classes.

Conclusions
Two groups of sensor models are proposed which allow a more realistic simulation of the
control applications of activated sludge systems. The first group covers models for specific
sensors. The main characteristics of existing sensors with respect to control applications
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are described. The aim is to choose a specific sensor or to optimise existing measurement
and control systems. The control engineer can also test the robustness of the control
strategy against systematic errors as well as noise effects. Under some basic assumptions
such as linearity, the models include the response time, noise and drift as well as the
calibration and cleaning intervals.

The second group of sensor models is designed for simulation benchmark studies.
Various simulation benchmark systems such as the COST (Alex et al., 1999; Copp, 2002)
or IWA benchmark (Copp et al., 2001) have been defined in recent years in order to
compare different control strategies in a standardised environment. The widely used ideal
or simplified sensor models represent a limiting factor for the comparability with field
applications. A classification of sensor types and models is proposed in order to obtain
more realistic and comparable results. A classification example for commonly used sensors
is given. The sensor models are divided up into continuously and discontinuously operating
ones, taking into account the response time, a measuring interval and a “standard” noise.
The width of the noise is defined as a standard deviation of 2.5% of the maximum measur-
ing-range boundary. This should move the benchmark environment forward towards more
applicable results. Moreover, it could also be an important step for optimisation studies
using dynamic simulation because it will allow control engineers to define the require-
ments of the measuring equipment on the basis of the selected control strategy.

An investigation of the impact of sensor behaviour on various control strategies using
the defined sensor classes is presented in Alex et al. (2002). A next step for even more real-
istic simulation results would be to model the response of the activated sludge system with
respect to the controllers, for example a delay due to a limitation of the start/stop frequency
of a blower.
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